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We prove that the locally perturbed X Y  model returns to equilibrium under the 
unperturbed evolution but the unperturbed model does not necessarily 
approach equilibrium under the perturbed evolution. In fact this latter property 
is false for perturbation by a local magnetization. The failure is directly 
attributable to the formation of bound states. If the perturbation is quadratic 
these problems are reduced to spectral analysis of the one-particle Hamiltonian. 
We demonstrate that the perturbed Hamiltonian has a finite set of eigenvalues 
of finite multiplicity together with some absolutely continuous spectrum. Eigen- 
values can occur in the continuum if, and only if, the perturbation dislocates the 
system. Singular continuous spectrum cannot occur. 
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1. INTRODUCTION 

Our purpose is to investigate the return to equilibrium of the linear X Y  
model and perturbations of this model. Various aspects of this problem 
have already been considered by many authors, (1-8) either by explicit 
calculations(1 3) or by general theory. (4-8) The most widely studied problem 
has been the evolution, under the unperturbed dynamics r ~ of an 
equilibrium state for a locally perturbed dynamics r. The general con- 
clusion is that the state converges to the corresponding r~ 
state. In Ref. 3 the reverse problem was examined, and by specific 
calculation it was shown that a r~ state does not necessarily 
evolve under the perturbed evolution z to a r-equilibrium state. In this 
paper we give a general explanation of this irreversibility for a large class of 
quadratic perturbations. We show that it occurs if, and only if, the pertur- 
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bation causes the formation of bound states. Our method is based on the 
scattering formalism developed in Ref. 5. The problem then reduces to the 
spectral analysis of the perturbed evolution on the one-particle space. We 
show that for local perturbations this spectrum consists of an absolutely 
continuous part together with a finite number of eigenvalues with finite 
multiplicity. Eigenvalues in the continuum can occur but then the 
corresponding eigenfunctions are strictly localized. 

Although we mostly consider the two-sided X Y  model, our results are 
also valid for the one-sided model because it can be obtained from the two- 
sided model by a local perturbation. 

2. P R E L I M I N A R I E S  

Let ~'~ denote the C* algebra of Pauli spin operators {a~, a~, aS; 
x 6 7/} (see, for example, Ref. 6, Sec. 6.2.1) and for each finite interval I c  7/ 
and 7 e N define the X Y  Hamiltonian 

- - ~  E ~l~lrrxrrx+l (1 ~ x + l )  
HO, I = 4x~ { (1+7)  + -- )~) 0"2 O" 2 

It follows from general theory (e.g., Ref. 6, Sec. 6.2.1) that the norm limits 

z~ = lira eitH~ -itH~ 

exist for all A ~ d "  and t ~ ~. The notation I--* 2 indicates that the inter- 
vals increase and eventually contain any subinterval of 7/. The limits r~ 
define, a strongly continuous one-parameter group ro of * automorphisms 
of d ,  the X Y  evolution. 

Next, if V = V* e d and 

H1 = Ho,l + V 
then the norm limits 

~ t (A)= l im eitmAe i tm ,  A e d ' , t e ~  

also exist. The corresponding automorphism group v will be referred to as 
the perturbed evolution. 

Now if 0 : sg ~ ~ d "  denotes the * automorphism of d ~ such that 

0 ( ~ )  = - ~ ,  0 ( ~ )  -~ - ~ ,  0 ( c r y )  = ~ 

for all x e 7/, then O(Ho, z)= Ho,1 and consequently 

0~ o = to0 
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If 0(V) = V, then it also follows that 

0z = z0 

Elements A ~ ~'~ with the property O(A)= A are called even and elements 
such that O ( A ) - - - A  are called odd. Each A ~ d has a unique decom- 
position as a sum of odd and even elements A and A+ where 
A+_ = [ A + O ( A ) ] / 2 .  The even elements of d ~ generate a C* subalgebra 
d +  of d ~, and the odd elements generate a Banach subspace d ~_ of d s. 
We only consider even perturbations V and hence both ~0 and ~ restrict to 
* automorphism groups of d + .  

Practically all calculations on the X Y  model are based upon a 
replacement of the Pauli spin operators {0.~} by Fermi annihilation and 
creation operators {a~, a * ; x ~ _ } .  This is a standard procedure usually 
referred to as a Jordan-Wigner transformation. We use the general for- 
mulation given in Ref. 8, Section 2. 

Let d be the C* algebra generated by d ~ and an element T satisfying 

and 
T = T * ,  T2=1  

T A T = O _ ( A ) ,  A 6 d  ~ 

where 0 is the * automorphism of d "  such that 0 (o-T)= -0.~ if x~< 0 
and 0_ (o-~) = 0-~ if x ~> 1, for i = 1, 2. Then define annihilation and creation 
operators ax and a* by 

where 

a x = Tz~x(o. ~ + i0.~)/2, a* = T~x(a ~ -- 0.~)/2 (2.1) 

1 2 . 0 - ~ - -  1 ~x=o'3a3"" if x >  1 

--1 if x = l  

x x + l  
= 0 - 3 0 -  3 " ' ' 0 "  0 i f  X < I  

One verifies that the a and a* satisfy the anticommutation relations 

,} 

ay*} =ax,  

and we denote by ~r the C* subalgebra of ~ generated by the ax and 
a*. Now 0, and also 0_,  can be extended to ~ by setting 
O(T) = T =  O_(T).  Then defining odd and even parts of J and d c~R by 

if_+ -- {A e d ;  O(A)= + A }  

dC_+AR = {AedCAR;  0(A)= +A} 
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one has O ( a x ) =  - a x ,  O(a*).= - a *  and furthermore 

~ + = - -  +dCAR _~ d C A R  C~ ~ + = d e n ~r + 

d ~_ = TdC_AR = T(ar  cAR ~ ~ _ ) = d s ~ J _ 

Thus, the even parts of d e and d car  coincide but the odd parts are dis- 
tinct. 

Since Ho, l e d ~ +  =t ic+  AR one can also define z ~ on d cAR. In fact, 
explicit calculation with the Jordan-Wigner transformation (2.t) gives 

1 
Ho, t = -  ~ ~ { ( a * a x + l + a * + l a x ) + ? ( a * a * + ~ + a x + x a x )  } (2.2) 

x ~ l  

Moreover, if V=  V*~ d + ,  one can also define z on d caR. Both zo and 
then leave ~+-~c'~e invariant. Finally, one can extend z ~ to f f  by setting 

z~ T)  = TVo, , 

where Vo,, is the unitary operator 

Vo, ,=  ~ i'~ d t l " ' "  d t ~ z ~ ( P o )  ..... % ( P o )  
m>~O 

and 
Po = lira 0 _ (Hoa) - Hoa 

o o , 0"10"1 + (1 y) - -  G 2 0 - 2  } 

The perturbed group z extends in a similar fashion, replacing Ho, z by 
H~ where appropriate. (For further details see Ref. 8, or for a general 
discussion of perturbed automorphism groups, cocycles, etc., see Ref. 6, 
Section 5.4.1. ) 

Next we need some properties of KMS states and rely on Ref. 6 for 
general background. 

Let f l ~ .  Then it follows from Ref. 9 and 10 (see also Ref. 6, 
Theorem 6.2.47) that there exists a unique (z ~ fl)-KMS state COo~, and also 
a unique (z, fl)-KMS e / ,  over d ". Moreover, there are also unique such 
states po ~ and p~ over ~r We need the following result of Araki. (s) 

Propos i t i on  2.1. Let z ~ denote the X Y  evolution and z the pertur- 
bed evolution obtained with an even perturbation. For  each fl ~ ~, the 
KMS states o~0a , co ~ over ~ s  and po ~, pa over d car  satisfy 

COCo(A) = p~o(A), co~(A) = p ~ ( A )  

for all A e d~+ - _~CAR - - ~ q _  . 
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Proof. The proof is given at the beginning of Section 4 of Ref. 8. The 
argument can be paraphrased as follows. 

There exists a (z ~ state O3o ~ over sr obtained as a weak limit 
of the local Gibbs states corresponding to the Ho. I. This state can be 
assumed to be 0 invariant and also invariant under the automorphism 0 
of s2 satisfying O ( A ) =  A, A ~ d cAR and t~_(T)= - T .  The restrictions of 
cOg to d s and ~CAR are automatically (~o,/~)-KMS states of d s and 
~c~R, respectively. Hence these restrictions are equal to COo~ and po ~ by uni- 

= ~CAR The argument queness of these states. Therefore, ~oo~=p~ on d~+ ~ +  . 
for co ~ and p~ is identical. 

= or as the even part of a Next, it is convenient to describe d +  ~ +  
self-dual CAR-algebra. For this we adopt the conventions of Refs. 7, 8, 
and 11. 

Let 12 denote the Hilbert space of square summable sequences 
{ f ( x ) } ~  and l* its dual. We can identify l* with 12 by setting 
{ f ( x ) } * = { f ( x ) }  and f * ( g ) = ( f g ) .  Next for f~,f2~12 define 
a( f  l ), a*(f  2) e s~ r by 

a( f l )=~a~f~(X) ,  a* ( f2 )=~a*f2 (x )  
x x 

and for F = f ~ G f * ~ 1 2 0 1 *  set 

B(F) = a*( f  l) + a(f2) 

Then one has B(F)~ sd cAR and 

(2.3) 

B(F)* = B(FF) 

where F ( f  l @ f * )  = f2 | f~*, and 

{B(F)*, B(G)} = (F, G) 
where 

(f~ @ f * ,  g, @ g*) = (fa, g,) + (g2, f2) 

Now d cAR is generated by polynomials in the B(F), and since 
O[B(F)] = -B(F)  the even algebra -cr car is generated by even polynomials 
in the B(F). Next, one calculates from (2.2) and (2.3) that 

'where 

lira [Hoj ,  B(F)]  = B(hoF) 

ho = ~ ( U +  U*)/2 7 ( U -  U*)/2 
l_ - ~(  cr _ t y * ) / 2  - ( u  + u * ) / 2 _ 1  
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and U { f { x ) } = { f ( x + l ) } .  It follows that  h o = h *  
Moreover ,  the act ion of zo on ,4  cAR is such that  

~~ B(F) = B(e"hOF) 

Alternatively introducing the Four ier  t ransform 

/ ( {P )=  ~2 f ( x ) e  ix~ 
x ~ Z  

one has 

and 

Consequent ly  

f ( x ) =  ~--~ s  dqo f(qo) e -'x~ 

, /X / x .  

(Uf)((p)=e ~f((p), (U*f)((p)=e~f({p) 

A [ cos (p -- i7 sin (p] [ / l ( (p) ]  
(h~176 = Li7 sin q~ - c o s  (p A Lf2{{p)_] 

and Fho=-hoF.  

[ V, B(F) ]  = B(vF) 

where v is a bounded  opera tor  on h = & |  satisfying v F = - F v .  
Moreover ,  if there is a finite interval I c  2 such that  (vF)(x) = 0 for x ~ I we 
call V a local quadratic per turbat ion  and the corresponding v a local per- 
turbation.  In particular,  v is finite rank. If, more  generally, v is of trace class 
we refer to V as a quadratic trace class perturbat ion.  

Typically a quadrat ic  per turba t ion  V is a quadrat ic  function of 
{a~, a~; x e Z} and a local quadrat ic  per turbat ion  is a quadrat ic  function 
of {O_l,X a~; x~I} .  Since a ;  = _/O.lO.2,- x x linear combinat ions  of a~ are also 
quadrat ic  perturbations.  The per turba t ion  

1 

X E ~  

Since the matr ix  on the right has eigenvalues +_ (cos 2 q~ + 7 2 sin 2 q})1/2, this 
representat ion establishes that  the spectrum {r(ho) of h0 is absolutely con- 
t inuous if 171 ~a 1, and in fact a(ho) = - I~  u I~, where I v = (]71 A 1, 1 V 171 }. 
If 171 = 1 then a(ho) = { - 1, 1 }. 

Next  we introduce the class of per turbat ions  that  will be analyzed in 
more  detail in Section 3. 

= = .~CAR is called quadratic if The  per turbat ion  V V * e d +  _ +  
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with 2x ~ E and 
1 

IIVIl=~ ~ I,~xl< +~ 
x ~ Z  

is an example of a quadratic trace class perturbation, which is not 
necessarily local. The associated operator v has the action 

[v( f l  • fz*) ] (x )  = 2~(fl �9 - f * ) ( x )  

and hence v has finite trace norm Irvj[tr given by 

llvlltr =2 ~ [2xl=4ljWl] 
x ~ _  

Finally, we remark that if V is a quadratic perturbation then z acts on 
~r in a similar manner to z ~ One has 

r ~ B( F) = B( eith F) 

where h = h o + v. Moreover the unique (z ~ fl)- and (z,/~)-KMS states, po ~ 
and p '  over ~4 cAR, can be calculated as the quasi-free states with two-point 
functions 

Yo(B(F)* B(G))= (F, .(1 + e'h~ -1 G) 
(2.4) 

p~(B(F)* B(G))= (F, (1 +e 'h )  -1 G) 

(see, for example, Ref. 6, Example 5.3.2). 

Remark. Although it follows from Proposition 2.1 that poB= cog and 
s = dcAR it is not easy to verify by direct calculation that po ~ p ~ = c o t ~ o n ~ +  ~ +  , 

and p '  satisfy the KMS condition on d ' .  The difficulty arises in verifying 
the KMS relation 

p~o( Ar~ B ) ) = Yo( BA ) (2.5) 

for odd elements A, B ~  '~. For  example, it follows from the Jordan-  
Wigner transformations (2.1) that 

X - - 1  

a~= T ]-[ (2a*ay- 1)(ax+a*) 
y= 1 (2.6) 
z - - I  

a~= T I~ (2a*ay--1)(a~-a*) 
y = l  

x __ z for x, z >  1. Then i fA =a~ and B - a  2, one has Ar~ -~+--d cAe and 
= - d  cAR" hence, both sides of (2.5) are well-defined. But the B A ~ d +  ~ +  , 

presence of the factor T in (2.1) means that (2.5) does not follow directly 
from the (zo, fl)-KMS condition on d cAR. 
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3. R E T U R N  TO E Q U I L I B R I U M  

Our discussion of the time-development of perturbed equilibrium 
states, i.e. (~, fl)-KMS states, is based upon the techniques of scattering 
theory. The first basic result we use is the following. 

Proposition 3.1. Let h0 be a self-adjoint operator with absolutely 
continuous spectrum on a Hilbert space A and v a symmetric trace-class 
operator. Set h = h 0 + v and let /~ac denote the subspace of absolute con- 
tinuity of h. 

1. The strong limits 
lira e - im  eih~ f = C2 • f 

exist for all f e t; and their ranges R(C2+ ) satisfy 

R (  ~c~ + ) "~- ~ a c  = R(~ '~ _ ) 

2. The inverse operators (2 • : Aa r ~ A are given by 

lira e-ih~ f =f2~_l f 
g ~  ~cz(3 

for all f e  ~ .  

3. The operators f2• satisfy the intertwining property 

f2 + e ih~ = e~ht I2 +_, t E 

Proofs of this result can be extracted from any of the standard referen- 
ces on scattering theorem, e.g., Ref. 12, Chapter X or Ref. 13, Chapter XI. 
The subtle part is the statement R(O+ ) =  h~,  which is referred to as com- 
pleteness. This relies heavily on the assumption that v is trace-class. 

This result has immediate implications for perturbations of the X Y  
evolution. 

C o r o l l a r y  3.2. Let ~o and v be strongly continuous one-parameter 
groups of * automorphisms of the self-dual C* algebra d cAR over 

= l 2 • /2 ,  and suppose 

"r~ = B(ei'h~ "rt(B(F)) = B(e itch~ ~)r), F ~  

where h 0 is self-adjoint with absolutely continuous spectrum and v is sym- 
metric and of trace-class. 

It follows that the norm limits 

7_+_(A)= lim ~_tr~ 
t ~  •  



Return to Equilibrium in the XY Model  837 

exist for all A ~ d cAR and in particular 

7_+ B(F) =/~(t? + F) 
where 

( 2 i F =  lim e-it(h~176 
t ~  •  

The 7 + are norm-preserving * morphisms of dCAR with ranges R(?• 
equal to the C* subalgebra of d c~R generated by {B(F);F~R(t '2• 
Moreover 

7+z~ t ~  

This follows directly from Proposition 2.1 because d cAR is generated 
by { B ( F ) ; F e A }  and the mapping F ~ B ( F )  is continuous. In particular 
I[B(F)[I = [IFII. 

The existence of the maps 7+ on d cAR allows one to invoke many of 
the general results of Chapter 5, Section 5.4.1 of Ref. 6. But more can be 
deduced from the X Y  model by using uniqueness arguments via 
Proposition 2.1 as Araki (8) has already remarked. 

Theorem 3.3. Let z ~ denote the X Y  evolution on the spin algebra 
so" and z the evolution corresponding to a quadratic trace-class pertur- 
bation of z ~ If f le ~ and co", COoP denote the unique (r ~ fl)-, (z, fl)-KMS 
states over sr s, then 

lira co~(z~ = coo~(A) = co~(7+ (A)) 
t ~  +oO 

for all A e sr s. 

Proof. Let po ~ and pP denote the unique (r ~ and (~,/r 
states over ~CAR. Then pa is automatically z-invariant and hence 

lim p/~(~~ lira pP(z tz~ 

= pB(7+_(A)) 

for all A ~ d cAR by Corollary 2.2. But now we argue that p~o 7 + satisfy the 
(r ~ condition on ~r and hence pr o 7 • = Po ~ by uniqueness. The 
proof of the KMS property follows from the intertwining property 

~,7• =7_+~ ~ 

which implies that 

p'~176 = pa(7+(A) z,(7-+ (B))) 

p~oy+_(z~ A) = Y(r,(7 + (B)) 7_+ (A)) 
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for each pair A, B e d cAR. Then it follows fro the (z, fl)-KMS condition for 
p~ and Proposition 5.3.7 of Ref. 6 that p B o 7  + satisfy the (~o,//)-KMS con- 
dition. Thus p~ o 7 + = Po ~. 

Finally it follows from two applications of Proposition 2.1 that 

lim m~(r~ lim p~(z~ 
t ~  q-cO t ~  q - ~ 3  

= po~(A) 

=  ooqA) 

-d cAR Since, however, co" and ~og are even and for all Ae~r . 
? + ( d + )  _ d + ,  one has 

(rig=co p o ? + =  lim o~ ~oz ~ 
t ~  + o o  

The situation can be quite different if one considers evolution of the 
unperturbed KMS state COo~ under the perturbed evolution r. This is 
because h = h o + v  can have point spectrum. If the spectrum of h is 
absolutely continuous then the situation is reversible, because h = h o -  v 
and the foregoing arguments apply with r ~ r and COOP, oJ" interchanged. But 
if h has point spectrum the situation is irreversible. Our next objective is to 
analyze in more detail the spectrum a(h) of those h that arise as local per- 
turbations of the X Y  model. We begin with two general observations. 

First, the spectrum ~(h) is contained in [ - 1  v 17[ + llvl], 
1 v 171 + ][vH] and since FH= - H E  it is symmetric. Moreover, the point 
spectrum %(h) of h is symmetric and the eigenvalues +__E have the same 
multiplicity. This last statement follows because (h - E) F = 0 is equivalent 
to (h + E) FF = O. 

Second, remark that if I?[ = 1, then r { 1, - 1  }, and both eigen- 
values have infinite multiplicity. Let P+ denote the corresponding spectral 
projections. Now if V is a local perturbation, A E = ( h o - E ) - l v  is well- 
defined for all E e C\{ 1, - 1  } and compact, since v is finite-rank. It then 
follows easily from the analytic Fredholm theorem (see, for example, 
Ref. 13, Chap. VI) that ( I + A E )  -1 exists for all E ~ C \ ( ~ w { 1 , - 1 } )  
where the exceptional set g is a discrete subset of R\{ 1, - 1  }. Moreover 

( h - E )  - 1 =  (1 +AE) 1 (h0__E)-I  (3.1) 

and hence r~(h)___ ft. But it also follows from Fredholm theory that E~ g if, 
and only if, AEF+ F= 0 has a nonzero solution F e d .  Now let P denote 
the finite-rank projection onto the range of v. Then, for A e F + F = O  to 
have a nonzero solution it is necessary that 

det(P + PAe) = 0 (3.2) 
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But 

P + P A e = P + P P + v ( t - E )  - I + P P  v ( l + E )  -1 

Therefore (3.2) reduces to a condition of the form Q ( E ) =  0 where Q is a 
polynomial. Consequently the exceptional set ~ is finite. Finally if E ~ E the 
corresponding eigenspace has finite multiplicity, by Fredholm theory, and 
G = (ho - E) 1 F is an eigenfunction of h with eigenvalues E. Thus, in sum- 
mary the spectrum of h differs from that of h0 only by a finite set of eigen- 
values of finite multiplicity. This conclusion is also valid for fT[ r 1. 

T h e o r o m  3.4. Let v be a local perturbation of the X Y  Hamiltonian 
h o with [7] :/= 1. 

The spectrum a(h) of h = ho+ v consists of two parts: 

1. absolutely continuous spectrum ~rac(h ) on a(ho) 

2. a finite set of eigenvalues a p ( h ) c [ - H h l [ ,  j]h[r] each of finite mul- 
tiplicity. 

,Drool The description of the point spectrum on I~\a(ho) is similar to 
the discussion for [7[ = 1. The family E e  C\a(h0) ~ A e =  (h 0 - E )  - I  v is an 
analytic operator valued function, and h has eigenvalues of finite mul- 
tiplicity in the descrete set of E for which (3.2) is satisfied. The proof that g 
is finite is slightly more complicated. 

After Fourier transformation, ( h 0 -  E)-~ corresponds to multiplication 
by a 2 x 2 matrix with diagonal entries + cos ~0 - E and off-diagonal entries 
+ i7 sin (p multiplied by D{  1 where 

DE(O) = E 2 - cos 2 q~ - 7 2 sin 2 (P 

Thus the kernel Re of (k o - E )  1 is immediately computable in terms of 
the integrals 

1 2~ 
I e (x )  =~-~ ( &o e ix* De((o) - l  (3.3) 

oo 

One has 

1 ( I E ( x  + 1 ) + IE(x  -- 1 ) -- 2EIE(x  ) 
R e ( x )  = 2 \ -- 7 [IE(x  + 1 ) -- IE(x  -- 1) ] 

7[ IE(x+  1 ) - - l e ( x - -  1)] '] (3.4) 
- - I e ( x  + 1 ) -- I e ( x  -- 1 ) -- 2EIE(x ) ]  

But the integrals can be explicitly evaluated by contour integration. Con- 
sider the case 0 ~< ~ < 1; the case 7 > l is similar. 
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If [E[ > 1 then 

1 [ 1 +  (3.5) 
/F(x) = 2 x / (E  2 - I)(E 2 - V 2) 

where E r = x / (E  2 - 7 2 ) / ( 1 -  72). Alternatively, if [El < 7 then 

IE(x) = -ilxL [1 + (-1)I~I](EN--x/~2 + 1) TM (3.5) 
2 , / ( 7  2 - e2)(1 - e 2) 

where E N = x//(7 2 - E2)/(1 - •2). 
Now the range PA of v is contained in A(I)= 12(I)G 12(I) * for some 

finite subset I c  77, and the finite-rank operator P + PAE occurring in (3.2) 
can be expressed as a matrix with entries which are finite linear com- 
binations of I e ( x i - x j )  and IE(x i - x j  + 1) with xg, x ie  L Therefore, using 
(3.4), one deduces that if [E[ > 1 then det(P + PAE)= 0 is equivalent to a 
condition of the form 

[Po(E 2) + x/-E 7 -  1 PI(E2)] + ~ [Qo(E z) + x//-~ - 1 QI(E2)] = 0 

where the P~, Q~ are polynomials whose order is determined by v. Thus 
after rationalization one obtains a necessary condition for an eigenvalue 
Q(E 2) = 0  with Q a polynomial. This establishes that there are at most a 
finite number of eigenvalues E with ]El > 1. The argument for [EI < 7 is 
similar, as is the case 171 > 1. 

To continue the proof we need to analyze the continuous spectrum of 
h. This analysis is again based on the identity (3.1), but requires more 
detailed information about Ae. Set IN= (1 ^ I% 1 v 171 ). 

I . emma  3.5. Let I be a finite subset of Z and P1 the orthogonal 
projection from ~ into ~(I)=12(I)| *. The matrix-valued function 
E e C \ a ( h o ) ~  P1(ho- E)-  1 p~ has an analytic continuation from the upper 
(lower) half-plane across Is, or -IN, to the lower (upper) half-plane. 

ProoL Let 6x~12(7/) denote the function such that fix(X)= 1 and 
6x (y ) = 0  if y C x ,  and set fi~l)=fix| 6~2)=0Gfi~. Then it suffices to 
establish that for each pair x, y e 7/and i, j e { 1, 2 } the function 

E e  C\o(ho)-  ( h o - E )  fi J ) 

has an analytic extension of the appropriate kind. But it follows from (3.4) 
that this is equivalent to establishing that for each x e 7/the function 

E e  C\a(ho) ~ Ie(x) = de e ix~ Dz(q~) -1 

has an appropriate extension. Again this follows by contour integration. 
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Specifically, one calculates that given 8 > 0 there is a 6 > 0 such that if 
171 A 1 + e < R e E <  17[ v 1--e  and 0 < I m E < 6 ,  then 

- i  
I ~ ( x )  = 

2 x/(1 - E2)(E 2 -- 7 2) 
[1 + ( -  1)l~l](Ev - i x / q - -  E~) I~l 

where E v = x / ( E 2 - 7 2 ) / ( 1 - 7 2 ) .  It follows immediately that E--, IE(X ) can 
be continued across I v to the lower half-plane; the other continuations 
follow from similar calculations. 

Now we want to apply Lemma 3.5 to the discussion of A e for 
E 6  --I, u I v. 

Let I =  {x~, x2,..., x,} c 2~ be such that the range of v is contained in 
`4(1) and let P ,  be the orthogonal projection from ,4 into `4(1). Then it 
follows from Lemma 3.5 that one can continue the analytic matrix-valued 
function E~  C \ a ( h o ) ~  P z ( H o - E  ) ~v across the cuts I v and - I  v. Hence 
by combination of the analytic Fredholm theorem and the above reasoning 
one deduces the following. 

L e m m a  3.6. There is a finite subset r  v such that 
[ 1 + Pr(ho - E ) -  1 v ] - ~ exists as a bounded operator for all E e C \ ( g  u 
{___ 1, +7}).  

In fact, E e C \ G ( h o ) - - . [ l + P t ( h o - E ) - ~ v ]  1 is a meromorphic 
function which has a meromorphic continuation across I v and - I  v. The 
residues at the poles in g are finite-rank operators, and for each E ~ g there 
is a nonzero solution of 

[ l + P r ( h o - E ) - l v ] F = O ,  F~`4 

If E E g  but ECa(ho), then it is an eigenvalue of h with eigenfunction 
G = ( h o - E )  -1 vF. If, however, E 6  ~ n a(ho), then G~ C(Z)@ C(7/)* and 
(h - E) G = 0, but it is not clear whether G ~ `4. 

Now consider the inverse operators (1 + BE)-1 with BE = v ( h o -  E)-1.  
If IEI is sufficiently large one has 

( I + B e ) - I F = F - - v { ~  [ - P z ( h o - E ) - l v ]  n} P z ( h o - E ) - I F  
n>~O 

= F - -  v [  i + P , ( h  o - E ) -  2] P , ( h o  - E )  - ~ F 

for all F ~  g. Thus if F~  `4(J) for some J, then E~  C\a(ho) --* (1 + BE) -~ F is 
a meromorphic function, with values in `4, that has a meromorphic con- 

822/44/5-6-9 
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tinuation through I~ and - I e  with values in ,~. In fact, (1 +Be)  -~ F s  
/~(1u J). This follows because if G ~/~(I~ J) then 

(G, (1 + Be) -1 F) = (G, F) - (G, v[1 + P, (h  o - E) -1  v ]  --1 e l ( h  0 _ E) 1 F) 

= 0  

because (G, F) --- 0 and vG = O. 
Next remark that if [El is sufficiently large one has 

(h - E) - - 1  = ( h  0 __  E) - - 1  (1 + BE) - '  

Hence if F e  g(I) one obtains the identity 

(F~ ( h  - E )  1 F) = ( F ,  (h o - -  E )  --1 ( l "4- B E )  - 1 F )  

for all E e N, with the exception of the set g w { _+ 1, _+ y }, by analytic con- 
tinuation. Moreover, the function is bounded and continuous on each sub- 
interval. This follows from the above discussion of (1 + B E ) - I F  and 
Lemma 3,5. Therefore one concludes the following. 

k e m m a  3.7. The singular continuous spectrum rising(h) of h is 
empty. 

ProoL If <a, b )  is an open subinterval of { - I ~ w I ~ } \ g  then h has 
absolutely continuous spectrum on <a, b )  by Theorem XIII.20 of Ref. 13 
and the foregoing discussion. But this implies rasing(h)c ~, a finite set, and 
hence rising(h) = ~ .  

Thus we have proved that the continuous spectrum of h is absolutely 
continuous and is contained in o-(ho) = - I  7 w I~, but by Proposition 3.1 the 
operators ho and h restricted to the subspace gac of absolute continuity are 
unitarily equivalent, and hence riac(h) = ri(ho). The points of g contained in 
ri(ho) are possibly eigenvalues of h, and if so they must have finite mul- 
tiplicity. Nevertheless this argument leaves open the question of whether 
the thresholds _+ 1, + 7 are eigenvalues. To handle these points, and also to 
obtain additional information about the eigenvalues in ri(ho), we adopt a 
different method. 

Assume the range of v is contained in /~(I) where I =  {xl,..., xn} and 
consider the eigenvalue equation ( h - E ) F = 0  on the complement of L 
One has 

[ ( h -  E) F](x)  = [ ( h o -  E) F](x)  = 0 

for x ~ < x l - 1  or x>~xn+ l .  Now, making the transformation 
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g l ( x ) =  [ f l ( x ) + f 2 ( x ) ] / x / 2 ,  ~2(x)= [ f l ( X ) - - f 2 ( X ) ] / ~ ,  t h e  equations 
[ ( h o -  E ) F ] ( x ) =  0 give the two equations 

(1 + 7) g l (  x + l )  + (1 - -  7)  g l (  x --  1) = 2E~2(x) 
(3.6) 

(1 - 7 )  ~2(x + 1 )+  (1 + 7) g 2 ( x -  1 )=  2Egl (x )  

By substitution of one into the other, one then finds that gl and g2 both 
satisfy 

(1 - 72) gi(x + 2) - 2(2E 2 - 1 - 72) gi(x) + (1 - 72) gi(x - 2) = 0 (3.7) 

These recurrence relations are readily solved. The solutions to the right of 
x ,  are 

gi(Xn + 2x) = ai2  2x + bi)L - 2x 

gi(xn + 2x + 1 ) = ci22x + di2 -2:, 

where 2 e C satisfies 121 ~< 1 and a~, bi, c~, di satisfy the boundary conditions 

gi(x , )  = a~ + b~, g~(x, + 2) = a~22 + b~2- 2 

g~(x, + 1)=c~ + di, g~(x, + 3)=c~22 + d~2 -2 

The value of 2 depends upon E and 7. There are various possibilities. If 
0 < 7 < 1 one has the following 

E > 1 then 2 = E~ - x/-E~ - 1 

7--.<E-..<I then 2 = E~ + i x f { - -  E 2 

0--.<E<7 then 2 = - i E ~ + i x / l + E  ~ 

with  E ,  = ~ / ( E  2 -  72)/1 - 75 

wi th  Er = x / ( E  2 - 72)/1 - 7 5 

wi th  E l, = x / ( 7  2 --  Ez ) /a  - 7 2 

and if E is replaced by - E ,  then 2 is replaced by - 2 .  Similar results are 
true if [71 > 1. 

It follows from these calculations that if E~  o(ho) then [21 = 1 = 11/21 
and gi is square-summable on [x , ,  oo > if, and only if, it is identically zero. 
Similarly gr is square-summable on < - oo, x~] if, and only if, it is zero on 
this interval. Thus the eigenfunctions corresponding to eigenvalues 
E ~  o(ho) are only nonzero on {xl + 1, xl + 2 ..... xn - 1 }. Therefore, there 
are at most x , -  x~ - 1 eigenvalues E, repeated according to multiplicity, in 
the interval [1 A 17f, 1 v 17l], and the same number in [ - 1  A ]71, 
- 1  v 17] ] because of symmetry. This completes the proof of Theorem 3.4. 

These calculations and their analogues for 171 > l also establish the 
following: 
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Corollary 3.8. Assume the range of v is contained in A(I) where 
I={xl ,x2 , . . . , x , }  and let F be a normalized eigenfunction of h 
corresponding to the eigenvalue E. 

If Eea(ho) then F(x) = 0  for x<<.xl and x>~x,. 
If Er  a(h0) there exists a c~ > 0 such that 

IF(x)l ~ c~ exp{ -d~(E)Ix[} 

for all x e 2~ where 

Now we are prepared to discuss the return to equilibrium of an unper- 
turbed equilibrium state under the perturbed evolution. The following 
result describes the general situation for the simplest A e d +  = ~CAR ~ +  �9 

Theorem 3.9. Adopt the assumptions of Theorem 3.3 but further 
assume that v is a local perturbation. Let ~ = ~p �9 Age where Aa~ denotes 
the subspace of absolute continuity of h and ,~p = ~a~ is the subspace of 
pure point spectrum of ,~. Then 

lim dt OJ~o(zt(B(F)* B(G))) 
T ~  +_oo -T 

= ofi(B(F)* B(G)) + ~ Ofio(B(P:F)* B(PjG)) - ~(B(PjF)*  B(PjG)) 
J 

where P: are the finite-rank projections onto the eigenspace ~: c ,~p of h. 

ProoL Let F =  Fp + F~ and G = Gp + G c, where Fp, Gp are the com- 
ponents of F, G, in Ap and Fc, Gc the components in '~a~. Then 

lim OO~o(~,,(B(Fc)* B(Gc))) = OJ~o(B(~ ~ 1F~)* B(~ ~_'Gc)) 

= ofi(B(F~)* B(G~)) 

by Statement 2 of Proposition 3.1 and a reversal of the argument used to 
prove Theorem 3.3. Next 

OO~o(B(F) * B(G))= (F, SG) 

with S =  (1 +exp{flho}) -1 and hence 

OO~o('r,(B(Fp) * B(Gc))) = ~ e-uEJ(SP:F, e~'hG~) 
J 
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where Ej is the eigenvalue of h on ~j = Pj~. But h has absolutely continuous 
spectrum on ~ac and Gc ~ ~ ,  so each term in the sum on the right con- 
verges pointwise to zero as t--> +oo by the Rieman~Lebesgue Lemma. 
Therefore since the sum is finite, by Theorem 3.4 

Similarly 

lim O~o(vt(B(Fp)* B(Gc))) = 0 
t ~  +o0 

lim ~o(rt(B(Fc)* B(Gp))) = 0 

Finally one has 

O~o(~,(B(FR)* B(Gp))) = ~. e i(Ej+ Ek),CO~o(B(pj ) F* B(PkG)) 
.Lk 

and it follows readily that 

lira dt cog(rt(B(Fp)* B(Gp))) = 2 c~ B(PjG)) 
T ~  +00 --T j 

Combining these results and making a minor rearrangement, one obtains 
the desired statement. 

Note that the existence of point spectrum means that the function 
t~O~o(~,(B(F)*B(G))) does not generally have a pointwise limit as 
t ~ _+oo. The point spectrum contributes a periodic, or almost periodic, 
behavior. Furthermore, the ergodic average of the function is not equal to 
cJ(B(F)* B(G)). If P denotes the orthogonal projection on ,~ with range 
~p, then the difference between these quantities can be estimated from 
Proposition 3.4. One obtains, for example 

lira dt Oa~o(z,(B(F) * B(F))) - o"(B(F)* ~< 2(F, PF) 
T ~  +oo 

This shows that the difference is small if F is localized far away. For exam- 
pie, it follows from Theorem 3.4 that P has finite rank and it also follows 
fro Corollary 3.8 that the eigenfunctions of h are either strictly localized or 
exponentially decreasing. Thus, if F ( y ) = 0  for [y] < R ,  there exist c, d > 0  
such that 

(F, PF) <~ ce -dR IIFII z 

Therefore, the unperturbed equilibrium state returns to equilibrium under 
the perturbed evolution in a very good approximation on observables far 
from the center of perturbation. 
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4. LOCAL M A G N E T I Z A T I O N  

In this section we consider perturbations 

2 . 
z = l  

corresponding to the addition of a local magnetic field of strength 2x,/2 at 
point x i. One readily calculates that the corresponding operator v on A has 
the action 

[v(L |  = ~ ,L, 6x,,x[A(x,) | -L(x,)]  
i = 1  

Theorem 3.4 can in this case be made more precise. 

P r o p o s i t i o n  4.1. If h = ho + v where h o is the XY Hamiltonian and 
v the above local magnetization, then a(h) consists of two parts 

1. absolutely continuous spectrum a~c(h)= a(ho) 
2. a finite set of eigenvalues ap(h) of finite multiplicity with Crp(h)c 

I- -Ilhlt, Ilhll ]\o-(ho). 
Proof. In light of Theorem 3.4, it suffices to prove there are no eigen- 

values Er But it follows from Corollary 3.8 that such eigenvalues 
exist if, and only if, the corresponding eigenfunctions F vanish for x ~< xl 
and x ~> x~. But then the eigenvalue equation gives 

0 = [ (h  - E )  F - l ( x , )  = [f~(x~ + 1) + ?f2(xl + 1) ] /2  

= [ - ~ f ~ ( x ~  + 1)-fa(x~ + 1)3/2 

Therefore f l ( x l  + 1 ) = 0 = f 2 ( x  1 -F 1) and by iteration F = 0 .  Thus there are 
no nonzero eigenfunctions corresponding to E e a(h0). 

The eigenvalues and eigenfunctions of h can be computed explicitly in 
simple cases. For  example, if V= 2a~ and 0 ~< 7 < 1, then the eigenvalue 
equation ( h -  E ) F =  0, written in the form 

F+ (ho- E) -1 vF=O 

and evaluated at x = 0, gives the eigenvalue conditions 

1 f ~ ( 0 ) = 0 =  1 +__(E2 - f2(0) 
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for I E[ > 1 and 

+ 2E = ( 1  2E _E2))f2(O) 
(1 x/(I_E2)(72_E2))f1(O)=O x/(1 _ E2)(72 

for IEI < 7. Here we have used (3.4) and (3.5). 
Hence if 2 > 0 there is a solution with E >  1 and a second solution 

with - 7 < E < 0 ,  both such that f2(0)=0.  There are also the symmetric 
solutions E <  - 1  and 0 < E <  7 with f1(0) = 0. In particular, eigenvalues 
can occur in the gap in o-(ho). 

One concludes that the irreversible phenomena described by 
Theorem 3.9 occur for a local magnetization. The unperturbed equilibrium 
state behaves periodically under the perturbed evolution but its ergodic 
average approaches a limit. This limit differs from the perturbed 
equilibrium state but the difference is exponentially small as x ~ co. 

5. T H E  O N E - S I D E D  X Y  M O D E L  

Although the foregoing discussion has been for the two-sided XY 
model the results also extend to the one-sided model because it can be 
obtained from the two-sided model by a local perturbation. 

The one-sided model is defined in the manner of Section 2 but one 
only considers the C* algebra of Pauli spin operators ~ with x >1- 1 and the 
XY Hamiltonians Ho, l with I c Z + .  Alternatively one can consider the 
algebra d = and two one-sided models, the left and the right, defined 
through H0.1 with I c  7/\Z+ and I c  2+.  The description of these models is 
very similar to that of the two-sided model. The dynamics are defined 
through Hamiltonians ho, t and h0,r, which act on the subspaces ~ ( 2 \ 2 + )  
and ~(Z+) of ~, respectively. Then the Hamiltonian ho of the two-sided 
model is given by 

ho = ho,t + ho, r + Vo (5.1) 

where Vo is the local perturbation associated with the dislocation pertur- 
bation 

Vo = 7{(ao al  q- a*ao) + 7(a'a* + alao) } 

The one-sided XY model differs from the two-sided model in one 
important respect. The Hamiltonians ho, r or ho, t have absolutely continuous 
spectrum on -17 w Iv, but if 7 # 0 there is also an eigenvalue E =  0 (see, for 
example, Ref. 7, Sec. 6). This can also be verified by remarking that the 
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recurrence relations (3.6) have a solution with E =  0 given by g i ( x ) =  0 for 
x ~< 0, gi(2x) = 0 for x/> 1, and 

( 7 -  1"] :~ 
g m ( 2 x + l ) = \ 7 + l ] ,  g 2 = O ,  if 7 > 0  

(~+1~ ~, 
g2(2X + 1 ) -- \ ~ - ~ / /  gl = 0, if 7 < 0 

The presence of this eigenvalue means the proofs of Theorem 3.4 and 
Proposition 4.1 cannot be simply repeated with h o replaced by ho, r or ho, t. 
Nevertheless the analogous results can be deduced from the representation 
(5.1). If v is a local perturbation of ho.r, i.e., if v acts locally on/~(Z+ ), then 

ho, t + ho,r + v : h o + v - v o 

Now v - v  o is a local perturbation of ho and hence Theorem 3.4 holds for 
h = ho, t + ho, r + v. Then, by restriction to/~(71 + ), one concludes that ho,r + v 
has at most a finite number of eigenvalues with finite multiplicity and in 
addition absolutely continuous spectrum in a(ho). It is an easy exercise, 
however, to prove that the continuous spectrum is in fact equal to a(ho). 
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